
User's guide to ChIP-Seq applications: command-line usage and option
summary

1. Basics about the ChIP-Seq Tools

The ChIP-Seq software provides a set of tools performing common genome-wide ChIP-
seq analysis tasks, including positional correlation analysis, peak detection, and genome
partitioning into signal-rich and signal-poor regions. These tools exist as stand-alone C
programs and perform the following tasks:

I. Positional correlation analysis (chipcor, chipextract),
II. Tag centering (chipcenter),
III. Signal peaks detection (chippeak),
IV. Partitioning of the genome into signal-rich and poor regions (chippart),
V. Feature extraction tool (chipscore)
VI. Filtering tool (counts_filter)

Because the ChIP-Seq tools are primarily optimized for speed, they use their own
compact format for ChIP-Seq data representation called SGA (Simplified Genome
Annotation). SGA is a line-oriented, tab-delimited plain text format with the following
five obligatory fields per line:

I. Sequence ID (char string)
II. Feature (char string)
III. Sequence Position (integer)
IV. Strand (+/- or 0)
V. Tag Counts (integer)

An additional field may be added containing application-specific information used by
other programs. In the case of ChIP-Seq data, an SGA file represents the genome-wide
tag count distributions from one or several experiment. However, the format can also
represent a large variety of other types of genomic data, including derived features such
as peaks extracted from ChIP-Seq data, or genome annotations such as promoters. Any
type of genomic feature that can be projected to a single base on a chromosome can be
represented in SGA format.

The sequence ID field typically identifies a chromosome. The software does not impose
any naming convention. However, if you merge data from different experiments, the
same names must be used for the same chromosomes. The public data files access by the
ChIP-Seq server menu use complete (i.e. including the version) NCBI/RefSeq accession
numbers as sequence/chromosome identifiers. Chromosome names as used by the UCSC
genome browser constitute another de facto standard and are readily converted into
NCBI/RefSeq accession numbers. However, keep in mind that chromosome names are
ambiguous unless the corresponding assembly is indicated. Do not mix chromosome
names from different assemblies otherwise you will get wrong results.

The feature field contains a short code which identifies an experiment. It often
corresponds to the name of the molecular target of a ChIP-Seq experiment. Its function is
to distinguish data lines relating to different experiments that were merged into a single
file. The position field contains the position within the sequence. The strand field
indicates the strand to which the feature has been mapped. The SGA format distinguishes
between “oriented” features that occur either on the plus or on the minus strand of the
chromosome sequence, and “unoriented” features which cannot be assigned to one or the
other strand. Peaks from a ChIP-Seq experiment, for instance, constitute an example of
an unoriented feature. Unoriented features are identified by a 0 (zero) in field 4. The
counts field contains the number of reads that have been mapped to a specific base
position on the chromosome. It can also be used for other purposes as well, such as
representing conservation scores, SNP frequencies or any type of genome annotation that
can be mapped to a single base on a chromosome.

An example of an SGA-formatted file is shown here below:

NC_000001.9 H3K4me3 4794 + 1
NC_000001.9 H3K4me3 6090 + 1
NC_000001.9 H3K4me3 6099 + 3
NC_000001.9 H3K4me3 6655 + 1
NC_000001.9 H3K4me3 18453 - 1
NC_000001.9 H3K4me3 19285 + 1
NC_000001.9 H3K4me3 44529 + 4
NC_000001.9 H3K4me3 46333 + 1
NC_000001.9 H3K4me3 46349 - 1

Chip-Seq programs require SGA files to be sorted by sequence name, position, and
strand. In a UNIX environment, the command to properly sort SGA files is the following:

sort -s -k1,1 -k3,3n -k4,4 <SGA file>

Duplicated lines are allowed, even though we provide a program called compactsga to
merge repeated lines into a single line adjusting the count field accordingly.

2. ChIP-Seq programs: command-line usage and examples of use

1. Chipcor

chipcor [OPTIONS] –A <feature A> -B <feature B> -b <from> -e <to> -w <window> [<] SGAfile

The chipcor program reads a data file (or from <stdin>) in SGA format (<SGAfile>) and
generates a count correlation histogram, which is a text file that indicates the frequency
of the target feature (<feature B>) as a function of the relative distance to the reference
feature (<feature A>). The output of chipcor can be easily imported into any statistical or
graphical tool, such as R or gnuplot, to generate the correlation histogram.

Mandatory parameters are:

Parameter	 Description	
-A	<feature>	 	Feature	field	name	selecting	reference	tags	in	the	SGA	file.	The	strand	

can	also	be	included	as	a	feature	specification	(<feature>	=	<name>	[+|-]).	
-B	<feature>	 	Feature	field	name	selecting	target	tags	in	the	SGA	file.	The	strand	can	

also	be	included	as	a	feature	specification	(<feature>	=	<name>	[+|-]).	
-b	<from>	 	Beginning	position	of	the	correlation	analysis	range	(relative	distance	in	

bp)	considered	in	the	output	histogram.	
-e	<to>	 	End	position	of	the	correlation	analysis	range	(relative	distance	in	bp).	
-w	<window>	 	The	window	defines	the	histogram	step	size	or	bin.	

Options are:

Option	 Description	
-h	 Show	the	program	usage.	
-d	 Produce	debugging	output	and	check	whether	the	input	SGA	is	properly	

sorted.	
-o	 Oriented	strand	processing.	It	means	reverting	the	chromosome	axis	

when	the	reference	feature	is	on	the	–	strand.	
-c	 Count	cut-off	value	for	all	input	tags	(def=10).	
-n	 Histogram	normalization.	By	default	is	0,	meaning	that	histograms	entries	

display	raw	tag	counts.	If	–n	1,	histograms	entries	display	the	count	
density	(#counts/bp)	of	the	target	feature.	If	–n	2,	histograms	entries	
represent	target	feature	abundance	as	a	fold	change	relative	to	a	genome	
average.	

The exact position of the window along the range is defined such that the window is
always centered at position 0. As a result, the range might be slightly reduced.

Here is an example of using the ChIP-Seq correlation program chipcor to estimate the
average fragment size of CTCF tags:

chipcor -A "CTCF +" -B "CTCF -" -b -1000 -e 1000 -w 1 -c 1 -n 1 CTCF.sga > CTCF.out

where:

CTCF.sga is the input file containing the list of mapped CTCF tags
-A "CTCF +" is the reference feature (CTCF plus strand)
-B "CTCF −" is the target feature (CTCF minus strand)
-b is beginning of the range considered in the output histogram
-e is the end of the range
-w is the window width
-c is the count cut-off value
-n is the normalization mode (1 means “count density”)
CTCF.out is the output file containing the histogram values in text format

Documentation for most ChIP-Seq programs is provided via UNIX- style man page, type
e.g.:

man chipcor

Short usage instructions can also be obtained by simply typing the name of the program
without any options or arguments.

In the above example, the reference and target features were contained in the same input
file. This is not always the case. In the following example, we will analyze the
distribution of CTCF peaks in mouse embryonic stem cells relative to transcription start
sites from the Eukaryotic Promoter Database EPD. The input data for this analysis are
provided in two separate files: ES_CTCF_peaks.sga for CTCF peaks in mouse ES cells,
and Mm_EPDnew_001_mm9.sga for TSSs in mouse.

 These files need first to be merged before they can be processed by chipcor.

sort -s -m -k1,1 -k3,3n -k4,4 Mm_EPDnew_001_mm9.sga ES_CTCF_peaks.sga \
 > merged.sga
chipcor -A "TSS" -B "CTCF_P" -b -2500 -e 2500 -w 50 -c 1 -n 1 -o merged.sga \
 > CTCF_peaks.out

When the ‘oriented’ option (-o) is set, the strand of the reference tag is taken into account
in order to calculate the relative distance between the reference tag and all the target tags
that fall within the correlation range. In other words, the chromosome axis is reverted
each time the reference feature, that is the TSS in this example, is on the minus strand.

2. Chipcenter

chipcenter [OPTIONS] [–f <feature>] -s <shift> [<] SGAfile

The chipcenter program reads a data file (or from <stdin>) in SGA format (<SGAfile>),
and shifts (by <shift> bases) tag positions corresponding to a specific feature (<feature>)
to the estimated center-positions of DNA fragments. If no feature specification is set, the
program accepts all oriented lines of the input SGA. Strandless features are ignored. The
default output of chipcenter is a list of shifted oriented positions in SGA format. If
necessary, one can set the output strand to zero by means of the ‘-z’ option. The ‘-r’
option is used to replace the feature field with a new string.
The main parameters are:

Parameter	 Description	
-f		<feature>	 It	is	used	to	select	all	or	a	sub-set	of	input	tags.	The	feature	name	is	

specified	in	the	second	field	of	the	SGA-formatted	input.	This	parameter	is	
not	mandatory,	in	the	sense	that	if	no	feature	is	given,	then	all	tags	are	
selected.	

-s	<shift>	 It	defines	the	relative	shift	(in	bp)	of	tag	positions	to	estimated	center-
positions	of	DNA	fragments.	

Options are:

Option	 Description	
-h	 Show	the	program	usage.	
-d	 Produce	debugging	output	and	check	whether	the	input	SGA	is	properly	

sorted.	
-z	 Set	output	strand	to	zero.	
-c	 Count	cut-off	value	for	all	input	tags	(def=10).	
-r	 New	feature	name	(for	feature	replacement)	

Chipcenter is often used as a data preprocessing step in most applications.

Here is an example of using chipcenter in order to center mapped CTCF tags from human
CD4+ cells:

chipcenter -f "CTCF" -s 40 CTCF.sga > CTCF_centered.out

where:

CTCF.sga is the input file containing the list of mapped CTCF tags
-f "CTCF " is the feature name
-s 40 is the tag position shift

For ChIP-seq data, the shift value corresponds to half the average fragment size of the tag
reads as estimated by the 5’end-3’end correlation diagram produced by chipcor.

3. Chipextract

chipextract [OPTIONS] –A <feature A> -B <feature B> -b <from> -e <to> -w <bin> [<] SGAfile

The chipextract program reads a data file (or from <stdin>) in SGA format (<SGAfile>)
containing two features, a reference feature (<feature A>) and a target feature (<feature
B>), and, for each reference feature, it extracts target feature tags that fall into a distance
range ([<from>, <to>]) relative to the reference feature. The output of chipextract is a
table in text format consisting of all reference features (rows) with relative target tag
counts in bins of a given <bin> size (columns). For visualization purposes, the
chipextract table can be easily converted into a heat map, using R or similar tools.

Mandatory parameters are:

Parameter	 Description	
-A	<feature>	 	Feature	field	name	selecting	reference	tags	in	the	SGA	file.	The	strand	

can	also	be	included	as	a	feature	specification,	the	format	being	the	
following:	
<feature>	=	<name>	[+|-|0(strandless)|a(any)|o(oriented)].	
If	the	strand	is	not	specified,	it	is	set	to	a(any)	by	default.	

-B	<feature>	 	Feature	field	name	selecting	target	tags	in	the	SGA	file.	The	strand	can	
also	be	included	as	a	feature	specification	in	the	same	way	as	for	the	

reference	feature.	
-b	<from>	 	It	defines	the	beginning	position	of	the	correlation	analysis	range	

(relative	distance	in	bp).	
-e	<to>	 	End	position	of	the	correlation	analysis	range	(relative	distance	in	bp).	
-w	<bin>	 	Columns	width	(in	bp)	of	the	heat	map	table.	

Options are:

Option	 Description	
-h	 Show	the	program	usage.	
-d	 Produce	debugging	output	and	check	whether	the	input	SGA	is	properly	

sorted.	
-c	 Count	cut-off	value	for	all	input	tags	(def=1).	

The exact position of the sliding window along the range is defined such that the window
is always centered at position 0. As a result, the range might be slightly reduced.

Here is an example of using chipextract to analyze H3K4 histone modifications in mouse
embryonic stem cells relative to transcription start sites from the Eukaryotic Promoter
Database EPD. We would like to extract H3K4 tags around transcription initiation sites
(TSS). The input data for this analysis are provided in two separate files: ES_K4.sga for
H3K4me3 histone marks in mouse ES cells, and Mm_EPDnew_001_mm9.sga for TSSs
in mouse.
We first need to center the histone tags to estimated middle-positions of DNA fragments.
We shift the tags of 75 bp according to the 5’end-3’end correlation analysis:

chipcenter -f "H3K4me3" –s 75 ES.K4.sga > ES.K4_centered.sga

 As for chipcor, the input files need first to be merged before they can be processed by
chipextract:

sort -s -m -k1,1 -k3,3n -k4,4 Mm_EPDnew_001_mm9.sga ES.K4_centered.sga \
 > ES.TSS.K4.merged.sga

chipextract –A “TSS o” -B "H3K4me3 a" –b-1000 –e1000 –w20 ES.TSS.K4_merged.sga >

ES.TSS.K4_heatmap.out

where:

ES.TSS.K4_merged.sga is the input file containing the list of centered histone
marks tags together with the TSSs
-A "TSS o" is the reference feature (oriented TSS)
-B "H3K4me3 a" is the target feature (H3K4me3 any, i.e. on both strands)
-b is beginning of the range considered in the output table
-e is the end of the range
-w is the bin size (in bp)
ES.TSS.K4_heatmap.out is the heat map table in text format consisting of
target tag counts in bins of 20bp relative to each TSS

4. Chippeak

chippeak [OPTIONS] [–f <feature>] -t <threshold> -w <window> -v <vicinity> [<] SGAfile

The chippeak program reads a data file (or from <stdin>) in SGA format (<SGAfile>),
and detects signal peaks for tag positions corresponding to a specific feature (<feature>)
when given. If no feature is specified, all input tags or positions are equally processed.
The output is a list of peak center positions in SGA format. If tags or positions on both
strands are selected, the peak list is strandless, whereas if features on only one strand are
selected, the resulting peak list is oriented. The peak counts are reported in the 5th field.
The main parameters are:

Parameter	 Description	
-f		<feature>	 It	is	used	to	select	all	or	a	sub-set	of	input	tags.	The	feature	name	is	

specified	in	the	second	field	of	the	SGA-formatted	input.	This	parameter	is	
not	mandatory,	in	the	sense	that	if	no	feature	is	given,	then	all	tags	are	
selected.	

-t	<threshold>	 Peak	threshold.	Cumulative	tag	counts	within	a	range	<window>	should	be	
bigger	or	equal	to	threshold	<threshold>.	The	default	value	is	50.	

-w	<window>	 It	defines	the	integration	range	(in	bp)	of	tag	counts	around	each	tag	
position	across	the	whole	tag	distribution.	

-v	<vicinity>	 It	defines	the	minimal	distance	(in	bp)	amongst	a	group	of	local	peak	
maxima	(high	count	values).	

Chippeak implements a very simple method which works as follows. The number of tags
is counted in a sliding window of fixed width. Speed is gained by considering only those
windows which have at least one tag at the center position. At the end, all windows which
have tag numbers greater or equal to threshold value <t>, and in addition are locally
maximal within a so-called “vicinity range” <v>, are reported as peaks. Note that only
the peak mid-point positions are included in the output. If “peak refinement” is selected,
a post-processing step is turned on so as to improve peak location. For initially selected
peaks, the position is recomputed as the center of gravity of the counts in the region
defined by the window <w> parameter.
Chippeak works at its best with centered tag distributions.

Options are:

Option	 Description	
-h	 Show	the	program	usage.	
-d	 Produce	debugging	output	and	check	whether	the	input	SGA	is	properly	

sorted.	
-r	 Refine	peak	positions.	
-c	 Count	cut-off	value	for	all	input	tags	(def=10).	

Here is an example of using chippeak on the CTCF centered tags:

chippeak -f "CTCF" –t 15 –w 200 –v 200 CTCF_centered.sga > CTCF_peaks.out

where:

CTCF_centered.sga is the input file containing the list of centered CTCF tags
-f "CTCF " is the feature name
-t 15 is the peak threshold (in tag counts)
-w 200 is the window width
-v 200 is the vicinity range

With these parameters, the program detects 15’600 peaks.

5. Chippart

chippart [OPTIONS] [–f <feature>] -p <transition penalty> -s <density threshold> [<] SGAfile

The chippart program reads a data file (or from <stdin>) in SGA format (<SGAfile>),
and finds signal-enriched regions for tag positions corresponding to a given feature
<feature>. If no feature is specified, all input tags are equally processed. It outputs a list
of signal-enriched regions in SGA format in two lines (beginning of the region, end of the
region). For chippart the strand field of the output has a different meaning: the ‘+’
character indicates the beginning of the region, whereas the ‘-‘ character indicates the end
of the region.
The main parameters are:

Parameter	 Description	
-f		<feature>	 It	is	used	to	select	all	or	a	sub-set	of	input	tags.	The	feature	name	is	

specified	in	the	second	field	of	the	SGA-formatted	input.	This	
parameter	is	not	mandatory,	in	the	sense	that	if	no	feature	is	given,	
then	all	tags	are	selected.	

-p	<transition	
penalty>	

It	assigns	a	negative	score	to	a	transition	between	signal-enriched	and	
signal-poor	regions.	The	parameter	needs	to	be	negative.	It	controls	
the	fragment	length,	i.e.	high	penalty	->	long	fragments.	

-s	<density	threshold>	 It	is	a	count	density	threshold.	A	region	must	have	a	count	density	
higher	than	the	density	threshold	to	be	considered	as	a	signal-enriched	
DNA	stretch.		

The program also generates (to <stderr>) a statistical report with the following
information:

I. Total number of processed sequences, total DNA length, and total number of
fragments;

II. Total fragment length, average fragment length, and percentage of DNA length;
III. Percentage of total tag counts, average number of counts, and count density.

The two parameters of the programs are used to optimize a partitioning scoring function
by means of a fast dynamic programming algorithm. The scoring function is defined as a
sum of scores of:

1. Transition penalties (penalty)
2. Signal-enriched scores : length * (local count-density – threshold)
3. Signal-poor regions : length * (threshold – local count-density)

Options are:

Option	 Description	
-h	 Show	the	program	usage.	
-d	 Produce	debugging	output	and	check	whether	the	input	SGA	is	properly	

sorted.	
-c	 Count	cut-off	value	for	all	input	tags	(def=10).	

The chippart program is most suited to find signal regions such as histone modifications
that spread over large DNA regions.
Here is an example of using chippart to analyze H3K4 histone modifications in mouse
embryonic stem cells. As we did previously, we first need to center the histone tags to
estimated middle-positions of DNA fragments. We shift the tags of 75 bp according to
the 5’end-3’end correlation analysis:

chipcenter -f "H3K4me3" –s 75 ES.K4.sga > ES.K4_centered.sga

chippart -f "H3K4me3" –p-10 –s0.014 ES.K4_centered.sga > ES.K4_partit.out

where:

ES.K4_centered.sga is the input file containing the list of centered histone
marks tags
-f "H3K4me3 " is the feature name
-p-10 is the transition penalty
-s 0.014 is the count density threshold

The output of chippart is a SGA-like format in which each region of interest is split into
two lines, the beginning and the end, respectively. This SGA-like format can be easily
converted into BED format, using the conversion tool partit2bed.pl.
It is important to note that all ChIP-Seq programs send their output to standard output
(<stdout>) and can therefore be used in a pipeline.
Here is an example of such pipeline using chipcenter and chippart:

chipcenter -f "H3K4me3" –s 75 ES.K4.sga | chippart -f "H3K4me3" –p-10 –s0.014 \
> ES.K4_partit.out

Another example using chipcenter and chippeak for peak calling is the following:

chipcenter -f "CTCF" –s 40 CTCF.sga | chippeak -f "CTCF" –t 15 –w 200 –v 200 \
 > CTCF_peaks.out

6. Chipscore

chipscore [OPTIONS] –A <feature A> -B <feature B> -b <from> -e <to> [-t <thres>] [<] SGAfile

The chipscore program reads a data file (or from <stdin>) in SGA format (<SGAfile>)
and extracts all reference sites (<feature A>) that are enriched or depleted in target
feature (<feature B>) sites according to a given count threshold or score (<thres>).
Output SGA lines are those reference features that are enriched or depleted in target
feature. The counts corresponding to the target feature are reported in the 6th field.
The main parameters are:

Parameter	 Description	
-A	<feature>	 	Feature	field	name	selecting	reference	tags	in	the	SGA	file.	The	strand	

can	also	be	included	as	a	feature	specification	(<feature>	=	<name>	[+|-]).	
-B	<feature>	 	Feature	field	name	selecting	target	tags	in	the	SGA	file.	The	strand	can	

also	be	included	as	a	feature	specification	(<feature>	=	<name>	[+|-]).	
-b	<from>	 	Beginning	position	of	the	correlation	analysis	range	(relative	distance	in	

bp)	considered	in	the	output	histogram.	
-e	<to>	 	End	position	of	the	correlation	analysis	range	(relative	distance	in	bp).	
-t	<thres>	 Output	threshold	or	score.	The	program	extracts	reference	tags	that	are	

enriched	(>=)	or	depleted	in	target	tags	according	to	a	given	threshold	
<thres>.	This	is	not	a	mandatory	parameter	and	it	is	set	to	0	by	default.	

Options are:

Option	 Description	
-h	 Show	the	program	usage.	
-d	 Produce	debugging	output	and	check	whether	the	input	SGA	is	properly	

sorted.	
-c	 Count	cut-off	value	for	all	input	tags	(def=10).	
-o	 Oriented	strand	processing.	It	means	reverting	the	chromosome	axis	

when	the	reference	feature	is	on	the	–	strand.	
-r	 Reverse	extraction	process.	The	program	extracts	reference	sites	that	are	

depleted	in	target	sites.	
-q	 Report	feature	B	tag	counts	as	‘feature	name	=<int>’	(in	the	6th	field).	

Here is an example of using the program chipscore to extract transcription start sites from
the Eukaryotic Promoter Database EPD that are enriched in CTCF peaks. The input data
for this analysis are provided in two separate files: ES_CTCF_peaks.sga for CTCF peaks
in mouse ES cells, and Mm_EPDnew_001_mm9.sga for TSS’s in mouse.
These files need first to be merged before they can be processed by chipscore.

sort -s -m -k1,1 -k3,3n -k4,4 Mm_EPDnew_001_mm9.sga ES_CTCF_peaks.sga \
 > merged.sga

chipscore -A "TSS" -B "CTCF_P" -b -300 -e 10 -t 1 -c 1 -o merged.sga \
 > TSS_CTCF-enriched.out

where:

merged.sga is the input file containing the list of mapped TSSs and CTCF
peaks
-A "TSS" is the reference feature
-B "CTCF" is the target feature (CTCF peaks)
-b is beginning of the range considered in the analysis
-e is the end of the range
-c is the count cut-off value
-t is the count threshold
-o is the oriented option (TSSs are oriented features)
TSS_CTCF-enriched.out is the output file containing those TSS’s that
 contain a CTCF peak.

Alternatively, one can run the following pipeline:

sort -s -m -k1,1 -k3,3n -k4,4 Mm_EPDnew_001_mm9.sga | chipscore -A "TSS" -B "CTCF_P" \
-b -300 -e 10 -t 1 -c 1 -o > TSS_CTCF-enriched.out

3. Auxiliary Tools for data reformatting

We also provide a series of auxiliary tools (most of them perl scripts) that can be used to
perform format conversion tasks.
Most of the ChIP-seq data sets come in BAM or BED formats. If you have BAM files,
and you need to convert them to SGA format, the steps to follow are:

1. Find out which genome assembly has been used to generate the BAM files, and
make sure that the chromosome names agree with the naming scheme of the
UCSC genome browser.

2. Then use the following type of command.

bamToBed -i reads.bam | bed2sga.pl -f <feature> -s <species> | sort -s -k1,1 -k3,3n -k4,4 |

compactsga > reads.sga

The program bamToBed belongs to the BEDTools package, a suite of utilities for
comparing genomic features that can be installed from:

https://github.com/arq5x/bedtools2

bamToBed converts BAM alignments to BED format. The 'bed2sga.pl' tool is a perl
script that converts BED files to SGA format. To find instructions how to use it, type:

bed2sga.pl -h

SGA format requires a feature field (the second field) containing a character string that
defines the genomic feature represented by the file. The BED file does not have an
equivalent field. You therefore need to supply a feature for the conversion via the -f
option. The species is the name used by UCSC for the genome assembly to which the

reads have been mapped (e.g. hg18, mm9, dm3, etc.). bed2sga.pl will automatically
convert UCSC chromosome names into corresponding NCBI/RefSeq accession numbers.
Currently we provide chromosome ID conversion for the following assemblies: hg19,
hg18, mm8, mm9, mm10, ce4, ce6, dm3, dm6, danRer4, danRer5, danRer7, rn4, rn5,
panTro2, sacCer3, araTha1, spo2 (S.pombe), and plasFalc1 (P.falciaripum). The species
is only required if one wants to translate UCSC-based chromosome names into NCBI
RefSeq identifiers for comparison with data that use NCBI identifiers.

The information required to map NCBI RefSeq identifiers into chromosome numbers is
provided by a binary table called chro_idx.nstorage. The binary file chro_idx.nstorage
includes a hash table in Perl that, for each assembly, stores chromosome number-NCBI
identifier pairs as well as chromosome lengths indexed by chromosome NCBI identifiers.

The reasons why sorting is required have been explained before. The program
'compactsga' is a C program which merge lines corresponding to the same genome
position (identical sequence name, position and strand). For instance, the two input lines

NC_000001.9 H3K4me3 5011 + 1
NC_000001.9 H3K4me3 5011 + 1

would be replaced by the following single line:

NC_000001.9 H3K4me3 5011 + 2

Compacting sga files saves space and reduces program execution time, but unlike sorting
is not formally required by the ChIP-Seq tools.

The bed2sga.pl has two basic modes of operations, centered and oriented. In the centered
mode, the midpoint between the start and end position from the BED line (2nd and 3rd
field) will be used as position. In the oriented mode, the conversion depends on the
strand indicated in the BED file (6th field). If the strand is + then the value of the start
field will be incremented by one and used as position in the SGA file. If the strand is −,
the value of the end field will be used as position in the SGA file. Incrementing the start
position in oriented mode is necessary because the BED format has a “zero-based”
numbering system for chromosomal regions whereas SGA has a 1-based numbering
system. The behavior of the two conversion modes is illustrated by the following
example:

BED input:

chr1 100000266 100000291 . 0 +
chr1 100000383 100000408 . 0 -

SGA output, centered mode:

NC_000001.9 CHIPSEQ 100000278 + 1
NC_000001.9 CHIPSEQ 100000395 - 1

SGA output, oriented mode:

NC_000001.9 CHIPSEQ 100000267 + 1
NC_000001.9 CHIPSEQ 100000408 - 1

By the default, the conversion mode depends on the contents of the BED file. If the
strand field (which is optional in BED) is presented, the conversion will be done in
oriented mode. Otherwise, the conversion will be done in centered mode, and the strand
field will be set to zero. However, centered mode can be forced by the command the line
option –c.

The most common command pipeline to perform BED-to-SGA conversion is the
following:

bed2sga.pl -f <feature> -s <species> reads.bed | sort -s -k1,1 -k3,3n -k4,4 | compactsga >
reads.sga

There are several additional reformatting programs that may be useful in certain situation.
The C program featreplace replaces all feature names in an SGA file by a new name:

featreplace –f <feature> old.sga > new.sga

The formatting programs are typically used together with other formatting tools
belonging to publicly available software packages.
One example of such software is the liftOver program from UCSC that can be used to
convert chromosomal coordinates in a BED file from one genome assembly to another,
e.g.:

liftOver input.bed /db/liftOver/mm8ToMm9.over.chain.gz output.bed trash

Note that liftOver chain files can be downloaded from the UCSC site.

Additional conversion scripts include:

sga2bed.pl SGA to BED
partit2bed.pl Output of Partitioning tool (special SGA) to BED
fps2sga.pl FPS to SGA
sga2fps.pl SGA to FPS
gff2sga.pl GFF to SGA
sga2gff.pl SGA to GFF
sga2wigFS.pl SGA to WIG (wiggle) fixedStep format
sga2wigVS.pl SGA to WIG variableStep format

The last two programs produce custom track files that can be uploaded to the UCSC
genome browser for visualization. The FPS (Functional Position Set) format is the
specific format used by the Signal Search Analysis (SSA) tools, a set of programs
developed by our group for motif analysis (http://seqanswers.com/wiki/FPS).

4. Appendix: ChIP-Seq tools summary

Program	Name	 Description	 Input	

format	
Output	
Format	

Language	

Correlation	Tools	
chipcor	 Correlates	two	features	corresponding	to	two	

ChIP-seq	tag	(or	read)	distributions	
SGA		 Text		

(histogram)	
C	

chipextract	 Extracts	target	features	tags	that	fall	into	a	
distance	range	relative	to	a	reference	feature	

SGA		 Text		
(heatmap)	

C	

chipscore	 Extracts	ChIP-seq	tags	from	feature	A	that	are	
enriched	(or	depleted)	in	feature	B	tags	

SGA	 SGA	 C	

Peak	finding	Tools	
chippeak	 Locates	ChIP-seq	signal	peaks		 SGA	 SGA	 C	
chippart	 Partitions	the	genome	into	signal-rich	and	

signal-poor	segments	
SGA	 Special	SGA	 C	

Pre-processing	Tools	
chipcenter	 Shifts	ChIP-seq	tags	to	estimated	center	

positions	of	DNA	fragments	
SGA	 SGA	 C	

counts_filter	 Filters	out	or	select	all	ChIP-seq	tags	that	occur	
within	a	set	of	DNA	regions	(e.g.	repeat	mask)	

SGA	 SGA	 C	

Reformatting	Tools	
compactsga	 Merges	equal	ChIP-seq	tag	positions	into	a	

single	line	adjusting	the	count	field		
SGA	 SGA	 C	

featreplace	 Changes	the	name	of	the	<feature>	field		 SGA	 SGA	 C	
Perl	conversion	Tools	

bed2sga.pl	 Converts	BED	format	into	SGA	format	 BED		 SGA	 Perl	
fps2sga.pl	 Converts	FPS	format	into	SGA	format	 FPS	 SGA	 Perl	
gff2sga.pl	 Converts	GFF	format	into	SGA	format	 GFF	 SGA	 Perl	
partit2sga.pl	 Converts	the	output	from	the	chippart	tool	

into	centered	SGA	format	
Special	
SGA	

BED	 Perl	

partit2bed.pl	 Converts	the	output	from	the	chippart	tool	
into	BED	format	

Special	
SGA	

BED	 Perl	

partit2gff.pl	 Converts	the	output	from	the	chippart	tool	
into	GFF	format	

Special	
SGA	

GFF	 Perl	

wigVS2sga.pl	 Converts	Wig	Variable	Step	format	into	SGA	
format	

Wig	 SGA	 	

sga2bed.pl	 Converts	SGA	format	into	BED	format		 SGA	 BED	 Perl	
sga2gff.pl	 Converts	SGA	format	into	GFF	format	 SGA	 GFF	 Perl	
sga2fps.pl	 Converts	SGA	format	into	FPS	format	 SGA	 FPS	 Perl	
sga2wigVS.pl	 Converts	SGA	format	into	Wig	Variable	Step	

format	
SGA	 Wig	 Perl	

sga2wigFS.pl	 Converts	SGA	format	into	Wig	Fixed	Step	
format	

SGA	 Wig	 Perl	

	

Giovanna Ambrosini 19.04.2016

