ChIP-seq data:
Filename | Description | Feature | GEO-ID | |
1 | GSM1113427.sga | Kasumi RUNX1 C-term rep1 | RUNX1_CT | GSM1113427 |
2 | GSM1113428.sga | Kasumi RUNX1 C-term rep2 | RUNX1_CT | GSM1113428 |
3 | GSM1113429.sga | Kasumi AML1-ETO rep1 | AML1_ETO | GSM1113429 |
4 | GSM1113430.sga | Kasumi AML1-ETO rep2 | AML1_ETO | GSM1113430 |
5 | GSM1113431.sga | Kasumi control(RUNX1) rep1 | NIS | GSM1113431 |
6 | GSM1113432.sga | Kasumi control(RUNX1) rep2 | NIS | GSM1113432 |
7 | GSM1113433.sga | Kasumi AP4 rep1 | AP4 | GSM1113433 |
8 | GSM1113434.sga | Kasumi AP4 rep2 | AP4 | GSM1113434 |
9 | GSM1113435.sga | Kasumi control(AP4) rep1 | NIS | GSM1113435 |
10 | GSM1113436.sga | Kasumi control(AP4) rep2 | NIS | GSM1113436 |
11 | GSM1113437.sga | Kasumi RUNX1 N-term rep1 | RUNX1_NT | GSM1113437 |
12 | GSM1113438.sga | Kasumi RUNX1 N-term rep2 | RUNX1_NT | GSM1113438 |
Control samples were generated by CHIP-seq using a non immune serum (NIS) instead of a specific antibody. _1 _2 are duplicates.
FASTQ files were extracted from SRA files using fastq-dump (SRA toolkit v2.5.0) and mapped to the hg18 genome using Bowtie v0.12.8. SAM files were then converted into bam using samtools v0.1.14 and to bed using bamToBed v2.12.0 (bedtools). SGA conversion was carried out using bed2sga.pl (ChIP-Seq v. 1.5.2).